
NASA-CR-l?6434

MCAT Inst_ute

Progress Repod

94-06

(NASA-CR-196434)

MULTI-PARTITIONING FOR ADI-SCHE_ES

ON MESSAGE PASSING ARCHITECTURES

Prooress Report (MCAT Inst.) 32 p

G3/61

N95-10133

Unclas

0019746

Multi-partitioning for ADI-schemes

on message passing architectures

Rob F. Van der Wijngaart

July 1994 NCC2-752

MCAT Institute

3933 Blue Gum Drive

San Jose, CA 95127

Multi-partitioning for ADI-schemes

on message-passing architectures

Rob F. Van der Wijngaart

1 Introduction

In order to simulate the effects of the impingement of hot exhaust jets of

High Performance Aircraft on landing surfaces a multi-disciplinary compu-

tation coupling flow dynamics to heat conduction in the runway needs to be

carried out. Within each of the disciplines one or more partial differential

equations need to be solved. Straightforward discretization and lineariza-

tion of these equations leads to large sparse systems of linear equations that

cannot be solved efficiently using direct methods. However, if the three-

dimensional spatial discretization operators are approximated by products of

one-dimensional operators, they can be inverted at a reasonable cost. This

kind of discrete-operator splitting is called Alternating Direction Implicit

(ADI).

Because of its computational attractiveness, ADI has become a major

work horse for solving compressible fluid flow problems (e.g. [1]). Conse-

quently, a lot can be gained from an efficient parallel implementation. But

the most popular paradigm for parallel computations--that of an array of

processors that have access only to local data and that communicate through

so-called messages--suffers from the fact that ADI creates data dependen-

cies in all three coordinate directions in the successive stages of the inversions

of the respective one-dimensional operators. These dependencies can result

in severe load imbalances, or in heavy message traffic, depending on how

the total problem is decomposed into tasks to be solved by the individual

processors•

The work described in this report relates to the study of decomposition

techniques that minimize load imbalance and message-passing frequency.

2 Decompositions

In the field of finite-element, -volume, and -difference methods for partial

differential equations the amount of computational work per grid point is

usually constant. Therefore, a uniform distribution of work among processors

can be obtained by assigning equal numbers of points to each processor. This

is called domain decomposition.

3 Results and conclusions

Of the three most viable techniques examined in [2] the so-called multi-

partitioning strategy was found to be most efficient on the Intel iPSC/860

and Paragon for the NAS Scalar Penta-diagonal Parallel Benchmark (SP)

[3]. This efficiency derives largely from the coarse granularity of the strategy,

which reduces latencies and allows overlap of communication and computa-
tion.

Consequently, multi-partitioning was also used for the implementation of

the SP and a modification of a full-fledged flow solver [4] on a network of

workstations using the Parallel Virtual Machine (PVM) package from Oak

Ridge National Laboratory [5]. This implementation has met with only mod-

erate success so far, mostly because of the very limited communication prop-

erties of Ethernet connecting the workstations. An upgrade of the switching

network is expected to improve performance significantly.

The results of the above investigations are described in references [2] and

[4], which are attached to this report as appendices.

References

[1] T.H. Pulliam, D.S. Chaussee, A diagonal form of an implicit ap-

proximate factorization algorithm, Journal of Computational Physics,

Vol. 29, p. 1037, 1975

[2] R.F. Van der Wijngaart, T. Phung, E. Barszcz, Three implementations

of the NAS scalar penta-diagonal benchmark, submitted for presentation

at Supercomputing '94, November 1994

2

[3] D. Bailey, J. Barton, T. Lasinski, H. Simon, The NAS parallel bench-

marks, NASA Ames Report RNR-91-002 Revision 2, 1991

[4] M.H. Smith, R.F. Van der Wijngaart, Granularity and the parallel ef-

ficiency of flow solution on distributed computer systems, 25 th AIAA

Fluid Dynamics Conference, Colorado Springs, CO, June 20-23, 1994

[5] A. Geist et al., PVM 3 User's guide and reference manual, ORNL/TM-

12187, Oak Ridge, Tennessee, May 1993

3

B= m

AIAA-94-2260

Granularity and the Parallel Efficiency of
Flow Solution on Distributed Computer
Systems

Merritt H. Smith
NASA Ames Research Center
Moffett Field, CA

Rob F, Van der Wijngaart
MCAT Institute
Moffett Field, CA

25th AIAA Fluid Dynamics
Conference

June 20-23, 1994/Colorado Springs, CO

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L'Enfant Promenade, S.W., Washington, D.C. 20024

GRANULARITY AND THE PARALLEL EFFICIENCY OF FLOW SOLUTION ON

DISTRIBUTED COMPUTER SYSTEMS

Merritt H. Smith t and Rob E Van der Wijngaart _t

NASA Ames Research Center

Moffett Field, California

Abstract

Distributed parallel computer systems
present a unique challenge to the designer of
flow solution algorithms. Message latencies on
the order of milliseconds, poor connectivity,
and very low network bandwidths stand as

obstacles to parallel efficiency. A parallel
method, developed in this work, for solving
the Reynolds-averaged Navier-Stokes equa-
tions achieves reasonable efficiency (>50%)
on clusters of from one to eight moderately
fast workstation processors connected by
Ethernet. A variable-grain multi-partition algo-
rithm provides useful parallelism while limit-

ing the number and volume of messages. We
describe a new parameter which, while incom-

plete, begins to coalesce the performance of
different algorithms on different clusters into a
single curve.

Inlmdmlim

Combining multiple workstations into a
network-based parallel computer is an attrac-
tive alternative to spending millions of dollars
on a conventional supercomputer or a dedi-
cated multi-processor. In many instances the
hardware is already in place. A workstation
cluster is easily and inexpensively expandable,
and the workstations need not be co-opted
from their original intended purposes. It
becomes a matter of careful programming to
produce useful applications on the distributed
system. Therein lies the challenge.

It is tempting to think of a cluster of work-

stations as just another variety of distributed
memory multi-processor. This thinking is
accurate in the sense that there are multiple
processing units, each with its own local mem-

ory, and all connected by a communications
network. The difficulty with this view is that it

suggests that a parallel computational strategy,
which runs efficiently on a dedicated multipro-
cessor, will also do well on a cluster. Typically,
this is not true.

Inter-Processor Communications

The connectivity within a dedicated multi-
processor is generally far better than that of a

cluster, which might be connected only by
Ethernet. While both systems provide proces-
sor interconnectivity, the internal connections
of a closely coupled machine are specifically
designed for parallel computing. The external
network traditionally has been used for infre-
quent file transfers, often over long distances.
The requirements for these two tasks are dif-
ferent, and using an external network for con-
nectivity in parallel computing involves some
additional costs.

Two primary factors describe the commu-
nication performance of a connectivity net-
work. The first is message latency -- the time
required to prepare a message for delivery. The
second is the data transfer rate, or bandwidth.

Mattson, et. al. l have made a comparison
of several widely available distributed-com-

puting communication packages. They have
compiled a list of round-trip transfer times for
a number of different message sizes on a pair
of Sun SPARCstation 1 workstations con-

nected by Ethernet. The focus here will be on

the da_ from the Parallel Virtual Machine
(PVM)" package from Oak Ridge National
Laboratory, but the data for most other pack-
ages is similar. They report that PVM 2.4.1 has
a message latency of approximately 2.5 milli-
seconds and a bandwidth of 583 KBytes/sec-
ond. Experience with PVM 2.4.1 and the more

"tResearch Scientist, Member AIAA

_tResearch Scientist, MCAT Institute, Member AIAA
Copyright © 1994 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17,

U.S. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Government purposes. All
other rights are reserved by the copyright owner.

recent release, PVM 3.2.3, on the NAS Dis-

tributed Computing Facility at NASA Ames
Research Center suggests that latency and
bandwidth are similar for later versions of
PVM.

When compared to the message-passing
speed of a dedicated multiprocessor like the
Intel iPSC-860, the communication perfor-

mance ?f PVM on Ethemet is quite poor.
Bokhari" reports a latency of 0.095 millisec-
onds for the lntel machine, and a transfer rate

of approximately 2.5 Mbyte/second. For larger
messages the transfer rate is the dominant fac-
tor, and the iPSC-860 is over four times faster
than PVM on an uncontested Ethernet. For the

smallest messages latency dominates, and the
iPSC-860 is over twenty-five times faster.
Thus, the message latency and bandwidth of
PVM communications over Ethernet can con-

spire to render strategies imported from dedi-
cated multiprocessors ineffective.

Other features of PVM can cause further

degradation of communication performance on
any network 4. PVM version 3.2.3 and earlier
require explicit packing of message buffers
before data may be sent out over the network,
and unpacking once the message arrives. Pack-
ing and unpacking are basically byte copying
operations. On some systems, this operation
can be quite slow, on the order of 10MByte/
second. If the PVMDEFAULT option is
selected for a particular message, a conversion
to the XDR device independent data format is
required, slowing the process still more.

A formula similar to that for conductances

in a wire describes the effect of message buff-

eting speed (Bpack) and network bandwidth
(Bne t) on the totkl communication performance
(Bcom):

1

Bco,_ = 1/Bne t + 2/Bpack'

Assume that the full Ethernet bandwidth of

1.25MByte/seeond can be attained between
two Silicon Graphics, Inc. R3000 processor
based workstations, and that packing and
unpacking of XDR encoded data proceeds at
2.2MByte/second. The actual communication
bandwidth which may be attained is then
0.59MByte/second. If the Ethernet is replaced
with FDDI operating at 12.5MBytes/second,

the maximum attainable bandwidth is

1.01MByte/second. Thus, most of the gain
from changing to FDDI is lost to the packing
and unpacking of XDR encoded data.

One immediate improvement can be
gained by communicating only raw binary data
(PVMRAW). In this case, packing and
unpacking speeds can increase by a factor of
four or five. Still, increasing the unpacking

speed to 7.1MByte/second holds FDDI to a
peak of 2.8Mbytes/second.

Communication should be looked upon as
a penalty to parallel computation; a compara-
ble serial algorithm has no need for it. The best
route to parallel efficiency on a cluster or any
other system is to maximize the real computa-
tional work in relation to the losses induced by
communication.

At this point we define two types of granu-
larity used in this work. The first, Latency
Granularity, is the ratio of the number of float-
ing point operations to the number of messages
sent between processors of the cluster

(GI = Nltop/Nmsg). The Bandwidth Granular-
ity is the ratio of the number of floating point
operations to the total message volume
(Go = N op/Nwr) In general, algorithms with

Jr/ . • •

larger granularity are better stated to cluster
computation.

_FD on Clusters

In deference to poor latency and band-
width, appropriate solution strategies must be
found if flow solutions are to be efficiently

computed on clustered systems. One such
strategy has already been demonstrated. Multi-
ple grids provide an easily exploited parallel

structure which has b,_n used to advantage on
workstation clusters-'. Multiple-grid systems

used in Computational Fluid Dynamics (CFD)

simp}i_'y the description of complex geome-
tries"'. Typically, the flow equations are
solved on each grid independently, with infor-
mation exchanged only on inter-grid interface
surfaces. A coarse-grained parallelism (i.e.
large G l and G b) may be extracted by placing
each grid on a different processor, without
changing the basic solution process used by a
serial computer. The method needs only two
messages per grid per iteration, and the mes-
sage volume per iteration is, at maximum, dou-
ble the total boundary surface area of the mesh
system. Both granularities increase if the
boundary surfaces need not be updated after

every iteration. Parallel efficiencies in excess

of 95 percent have been achieved using this
strategy for a relatively small number of pro-
cessors (fewer than 12).

One difficulty with this kind of very coarse
parallelism is load imbalance, which can cause
enormous losses. Imbalance occurs when the

workload assigned to each processor is not
commensurate with its performance. Proces-
sors which finish early will sit idle until the
slowest or most heavily loaded processor fin-
ishes.

The second, and possibly key disadvantage
of the grid-by-grid method is that the degree of
parallelism is limited to the number of grids in
the problem. Of course, grids can be divided
into sub-blocks to provide work for additional
processors, or to improve the load balance. For
a strictly explicit solver, this is a reasonable
choice. For (semi-)implicit methods the data

dependency of the solution at each point of the
grid extends beyond the boundaries of the
local sub-block. If the boundaries of the sub-

block are explicitly updated, the convergence
rate may be decreased. As total time to solu-
tion is the factor which must be minimized,
what is needed is a scheme which will main-

tain the implicitness of solution on an individ-

ual grid while efficiently distributing the work
over multiple processors.

Numerical Method

As outlined above, a successful parallel
algorithm on a distributed sytem must have
two key features. With the associated chal-
lenge in parentheses, they are:

1. Minimum number of messages
(Latency).

2. Minimum message volume (Band-
width).

Additionally, two objectives are common
to all parallel (CFD) applications.

3. Maintain or improve the convergence
characteristics of the original serial
algorithm.

4. Keep all processors busy doing useful
work.

The grid-by-grid parallel algorithm
described above and in Ref. 5 meets nearly all
of these criteria. Only two messages per grid
per iteration are needed. The total amount of

message traffic for a given grid system is a
minimum, and the original serial algorithm is

used in an unmodified form. It is the fourth cri-

terion which this method may fail to meet. If
there are more processors available than grids
in the problem, the extra processors go idle.

It is the goal of this work to find and imple-
ment a paraUelization strategy which meets all
of these objectives, and test it in a distributed
computing environment. The strategy selected
is a variation on the three-dimensional multi-

partition method described by Naik, et. al. 8

The modifications to the ,,method follow the
work of Van der Wijngaart', who has used this
method to solve the heat equation on an Intel
iPSC-860.

A complete single-grid flow solver, called
MEDUSA-MP, and a version of the NAS SP

Parallel Benchmark which use this multi-parti-
tion method are developed and discussed in the
next section.

Flow Solution Aleorithm

MEDUSA-MI_ solves the Reynolds-Aver-
aged Navier-Stokes equations, cast in strong
conservation law form, in generalized coordi-
nates using the diagonalized Beam-Warmingl0

algori_rp as implemented in the OVER-
FLOW _ code. The original Beam-Warming
algorithm may be represented as:

[I + hS_A"] [I+h8_/¢'1 [l + h_);C] AQ" =

-h (_i_E _ + _SnF_ + _i;G _)

where E, F, and G are the combined viscous
and inviscid fluxes, A, B, and C are the com-
bined viscous and inviscid flux Jacobians, and

AQ n is an increment of the conserved quanti-
fies. Implicit second-order dissipation is added
to the left side of the equation, and mixed sec-
ond and fourth-order dissipation is added to
the fight-hand-side (RHS) to enhance stability.
The system is solved by successively inverting
the matrix operators (from left to right) along
lines in each of the coordinate directions.

Using the eigenvectors of the inviscid flux
Jacobians, the equations may be approxi-
mately diagonalized:

T_ [1 + hS_A_] N [I + h_5,_A,_] P.

[I+ hSgA;] _AQ n = RHS"

3

whereRHS n is identical to the right-hand-side
of the block Beam-Wanning scheme, A x is a
diagonal matrix of the eigenvalues, and Tr, N,
P, and T5 -1 are block-diagonal. While it i_ not
true that'the inviscid and viscous flux Jacobi-

ans are simultaneously diagonalizable, an esti-
mate for the viscous contribution to the

eigenvalues may be made and added to the
appropriate implicit operators.

The steady-state solutions for the block
and diagonal schemes are identical, but the
diagonalized scheme is non-conservative in
time, and the time-accuracy in general is low-
ered from second to first-order". A complete
description of this algorithm may be found in
Ref. 10.

The advantage of the diagonalized scheme

over the original algorithm is that the matrix
systems which must be inverted have gone
from 5x5 block-tridiagonal to either scalar-
tridiagonal or scalar-pentadiagonal, depending
on whether second-order or mixed second and

fourth-order implicit dissipation is added. In
either case, a dramatic decrease in the number

of arithmetic operations results. The change
will also reduce the total volume of inter-pro-
cessor communication in a parallel implemen-
tation, as will be shown later.

NAS SP Parallel Benchmark

The NAS Scalar Pentadiagonal (SP) Paral-
lel Benchmark code was ported from the Intel
Paragon XP/S-15 to the cluster without
changes, except for message passing syntax
and process spawning, which accounted for
less than one percent of the source code. SP is
a simplified version of the diagonalized Beam-
Warming scheme with fourth order dissipation
discussed above. It is described in detail in
Ref. 13.

The main simplifying features of the
benchmark versus a true engineering applica-
tion are:

- Solution takes place on a Cartesian grid,
thus obviating the need to compute and
store metric terms.

- No boundary conditions are applied; the
boundary values are initialized and never
changed during the course of the compu-
tation.

- No turbulence model is used.

- The added fourth order smoothing is not
solution dependent.

Although these simplifications render the
benchmark invalid as a flow solver, they do
retain the main computational features in terms
of data dependencies and communication
requirements. In fact, the benchmark is a rather
severe test case for any parallel implementa-
tion, since the simplifying assumptions reduce
the computational load while leaving the com-
munication requirements virtually unchanged.

garallr, lilaliaa
A single grid is subdivided into a three-

dimensional array of N x N x N grid blocks, or

pa_rtitions, which are evenly distributed among
N "_ processors; each processor receives N
whole blocks. The partitions must be distrib-
uted to the processors such that any coordinate
plane will pass through exactly one partition
held by each processor. This will ensure a bal-
anced load across equivalent systems.

An example partit,_oning scheme for a sys-
tem to be solved by 4" processors is shown in
Fig. 1. Assume (K,L,M)-indexing in the parti-
tion array. In the K=I partition plane the num-
bering is canonical. As K increases by one the
location of the partition assigned to processor
1 is increased by one in both L and M. Thus,
processor 1 owns the body diagonal of the par-
tition array, hence the name "3D diagonal
multi-partitioning" used by Naik, et. al. Look-
ing at the family of K-partition planes, as K
increases, processor numbers which "fall off"
on the right or top re-appear on the next K-
plane on the opposite edge. More concisely,
each plane family is periodic in the two
included coordinate directions. Thus, every
diagonal of the partition array is held by a sin-
gle processor. The reasons for this careful par-
titioning will be explained shortly.

Solution of the system proceeds as follows.
The right-hand-side vector is computed in all
N partitions assigned to each processor. Inver-
sion of the matrix operators proceeds in two
steps using a wavefront technique. If _ runs
parallel to K in Fig. 1, each processor advances
the forward sweep of the Thomas algorithm
for all _-line segments in the K=I partition
plane. Upon completion of the forward sweep
for K= 1, a message is created on each proces-
sor containing essential elements of the matrix

super-diagonals and the modified right-hand-
side vector from all _-line segments in the par-

tition. This message is passed to the processor

4

containingthepartitionwith identicalL andM
coordinatesat K=2, whereit is unpacked.For
instance,processor1would sendthe message
to processor16.Theforward sweepis contin-
uedwith all processorsoperatingat K=2. The
forward sweependswhentheprocessis com-
pletein the_ direction(K=4).

Backwardsubstitutionproceedsin a simi-
lar manner,but in the reversedirection.Upon
completion of the backward substitutionat
eachK level,amessageis createdoneachpro-
cessorcontainingelementsof thesolutionvec-
tor from all _-line segmentsin the partition.
This messageis passedback to the processor
containingthe precedingK partition, and the
processis repeateduntil the inversionis com-
pleteat K= 1.

Theothertwo factorsaretreatedsimilarly,
exceptthatthewavefrontwill movein eachof
theremainingcoordinatedirections.

Three-dimensionalmulti-partitioning has
some distinct advantages.The method is
almost perfectly load balanced.If properly

K=I

13 14 15 16

9 10 11 12

5 16 7 8

1 2 3 4

applied, the number of grid points can vary by
at most one across the partitions in each direc-
tion, and every processor has exactly one parti-
tion at every K, L, and M level. Thus, for all
three factors, each processor will have very
nearly the same amount of work as any other,
and no processor will sit completely idle. The
load balance also benefits from each processor
having exactly one partition on each boundary
of the grid when applying boundary condi-
tions. As a result of the careful partitioning
described above, the communication pattern
for each processor is invariant; each processor
"slides" up and down its diagonal in the parti-
tion array while keeping the same six neigh-
boring processors.

In general, there are some costs for the 3D
multi-partition method. There are more proces-
sor interface points, and thus a greater message
volume, than would be found if the partition-
ing scheme allocated a single partition to each
processor Memory must be managed dynami-
cally to maintain flexibility, increasing coding

K"2

12 9 10 U

8 5 6 7

4 1 2 3

16 13 14 15
\

K=3
K=4

M

7 8 5 6

3 4 1 2

15 16 13 14

11 12 9 10

m_,. L

2 3 4 1

14 15 16 13

10 11 12 9

6 7 8 5
\

Figure 1: 3D diagonal partitioning scheme for a 4 2 processor system. The
number on the partition indicates to which processor it is assigned.

5

complexity, and lowering run-time efficiency
on a per-processorbasis.And while it hasnot
beenstatedexplicitly, it is necessaryto usean
integer-squared number of processors to
achieveabalancedwork load.

The yirtual Processor

The integer-squared limitation is really
only a problem on closely coupled machines
which do not allow multiple user processes per
processor. On a workstation, the number of
processes is not so severely limited. By start-
ing multiple processes on each processor of the
system and treating each process as if it were
an independent "virtual processor," a non-
square number of processors may be accom-
modated. The simplest method of assigning

processes to processors is to start n o processes

on each of np machines resulting ifin. 2 virtual
processors, satisfying the limitation_ of the
method. It is clear that as the number of

machines increases, the size of the partitions
on a particular grid will fall rapidly, resulting
in increased message traffic and decreased effi-
ciency.

Instead, MEDUSA-MP is designed to allo-
cate virtual processors such that the number of
virtual processors per processor never exceeds
a preset limit (mvp). An integer-squared num-

ber is searched for between one and mvp ×np,
such that the total work is most nearly bal-
anced across the processors. All processors
may not have the same number of processes
running, leading to idle time, but the reduction
in message traffic can offset this loss.

It is possible, even likely, that all of the
cluster processors will not be the same. If an
equal number of partitions are given to each
processor, regardless of processor speed and
memory, idle time will result. The concept of
the virtual processor can help ease this prob-
lem. By distributing more virtual processors to
faster machines, a better load balance can be
achieved on a heterogeneous system.

Partition Boundary Treatments

A modification-to the diagonalized Beam-
Warming scheme is made in MEDUSA-MP to
reduce significantly the message volume and
the per-processor memory requirements. The
dissipation scheme switches at each partition
boundary from mixed second and fourth-order
to pure second-order in the direction normal to
the boundary.

This change allows a layer of overlap cells
to be removed from each partition boundary,
saving memory. Reduced communication vol-
ume comes from two sources. The extra over-

lap cells no longer need updating, and the
matrix system may be dropped from scalar-
pentadiagonal to scalar-tridiagonal at the
boundary faces. Table 1 summarizes the total

communication volume per interior partition
per iteration for both diagonalized schemes,
with data for the block-tridiagonal scheme for
reference.

The penalty for this improvement in mem-
ory utilization and message volume is that the
steady-state solution will no longer be identi-
cal to one produced by the block Beam-Warm-
ing scheme. This difference does not

Scheme

Block Beam-

Warming

Diag. Beam-

Warming

Diag. Beam-

Warming

Partition

Boundary

Dissipation

Mixed 2nd and

4th-order

Mixed 2nd and

4th-order

2nd-order

Forward Sweep

(words/line/

partition)

Backward

Substitution

(words/line/

partition)

Three Factor

Total

(words/

partition)

25 matrix + 10 solution 45(S_+SrI+Sc)_ _
10 RHS

12 matrix+ 10 solution 32(S[+SrI+SD_, _
10 RHS

3 matrix+ 5 solution 13(S_+S.q+Sr)_,_
5 RHS

Table 1: Inter-partition communication summary for selected solution schemes. S_, S_,

and S t represent the number of grid points on a plane normal to _, "q, and _, respectively.

6

necessarilyrepresenta loss in accuracy;only
the form of the artificial dissipationhasbeen
modified. It is recognized,however,that the
modified schemeis more dissipative. This
effectwill bemagnifiedasthe numberof pro-
cessorsincreases,suggestingthat this modifi-
cation may be inappropriate for use on
massivelyparallel processors.However, the
numberof processorsusedin adistributedsys-
temis usuallyordersof magnitudeless,mean-
ing that the increaseddissipationwill occur
only ona fewgrid-planesthroughthesolution.
Further,thebetterconnectivityof a dedicated
multi-processorcould make this modification
unnecessary.Themodifieddissipation'seffect
on thestability of theschemehasnotyet been
determined.

Computing Environment

Measuring the performance of PVM jobs
on multi-user systems is a somewhat tricky
business. CFD computations on structured
grids should use static load balancing, since
this has the greatest potential for speed-up. But
statically balanced loads can be skewed dra-
matically if multiple users are allowed on a
cluster simultaneously. A dedicated cluster
ought to be used, which schedules one distrib-
uted job after another, and does not allow addi-
tional (interactive) use.

Due to practical limitations, such a dedi-

cated cluster was not available, so a special
strategy had to be adopted which runs counter
to common engineering practice. Rather than
running very long simulations (many itera-
tions) in order to average out system fluctua-
tions, very short runs are used. Long runs
provide a good view of the statistical average
of jobs run on the cluster with a typical user
load, which is exactly what is not wanted.
Short runs may .hit a period of high load, but
will occasionally take place in a time window
when not much else is happening, thus provid-
ing a good view of what a dedicated system
can deliver. Moreover, the ensemble minimum

of wall clock time spent is used, rather than the
ensemble average over many simulations.
Again, this is because the average predicts
loaded-system performance, while the mini-

mum shows dedicated-system performance.
Timing runs were made on two clusters at

NASA Ames. The RFA cluster consists of 22

Silicon Graphics, Inc. workstations with either
the R4000 or R4400 processor running at

50MHz and 75MHz respectively. Each
machine has at least 64MB of RAM. The

workstations are connected by an Ethernet
consisting of three subnets. As depicted in Fig.
2, two of the subnets, 34 and 51, are essentially
independent while the third, subnet 49, reaches
the FDDI backbone by way of subnet 51.

Subnet 34

5 systems

Subnet 51

3 systems

Subnet 49

14 systems

o

Figure 2: Network topology of the RFA
Cluster.

No effort at all has been expended to
achieve an optimal cluster arrangement. The
cluster is built from existing systems, and the
placement of a system on a particular subnet is
a function of the geographic location of the

processor.
The second cluster, referred to as the SPS

cluster, consists of four Silicon Graphics, Inc.
4D/380S workstations, each containing eight
R3000 processors running at 33MHz.
Although the eight processors per machine use
a single shared memory, PVM 3.2.3 does not
take advantage of this hardware feature and
passes all communications through the local
PVM daemon anyway. Consequently, for com-
munication purposes the cluster consists of 32
processors, although some messages will be
carded on internal lines. The SPS cluster pro-
vides both Ethernet and FDDI networks.

Results

Flow Solver Performanc¢

The test problem for this work is the sub-
sonic flow over a flat plate. This two-dimen-
sional flow is expanded in the third coordinate
direction by copying the grid as many times as
necessary for a reasonable sized computation.

It must be emphasized that the focus of this
work is on the computational performance of
the flow solver. And while this is essentially a

two-dimensionalgeometry,the flow solver is
fully three-dimensional.It was felt that this

simple geometry provides a sufficient test for
timing purposes. The flat plate grid has 61
points in the streamwise direction, and 51 in

the surface normal direction. Multi-partition
computations use a 61 x 51 x 64 point grid.
Due to memory restrictions on the RFA clus-

ter, single partition computations have been

carried out on grids of 61 x 51 x 25 points.
Computations on machines identical to those

of the RFA cluster, but with larger memory,
indicate that little or no loss in baseline proces-
sor performance is incurred by going to the
larger grid.

To demonstrate the effects of the modified

boundary smoothing, otherwise identical runs
are made using MEDUSA-MP and OVER-

FLOW-PVM. Four processors are used by
MEDUSA-MP, while one is used by OVER-
FLOW-PVM. Figure 3 shows computed skin

500 .. :............. _..............

MEDUSA-MP I- 4-- OVERFLOW-PVM

O

250

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 3: Non-dimensional skin friction as a
function of streamwise station for laminar

flat plate flow. Mr. s =0.2, Re=10,000. Com-
parisons between sJ'o'lutions from MEDUSA-
MP and OVERFLOW-PVM.

frictions from both codes. While there are
slight differences in the solutions, the differ-
ence between the skin friction values does not
exceed 0.3%.

Figure 4 is a plot of performance, mea-

sured in Mflops (Million floating-point opera-
tions per second), versus the number of

processors used in the computation. Mflops
were derived from the number of operations

performed on interior grid points (2105up.let./
iter.) and the elapsed wall-clock time. Bound-

ary point updates involve relatively few opera-
tions, and are ignored. MEDUSA-MP on the

RFA cluster (inverted triangles) shows nearly
linear speed-up with increasing number of pro-
cessors up to four. Above this, losses due to

Ethernet and PVM begin to be reflected in the
performance, eventually reducing incremental
speed-up to near zero.

25i!ii!i!ii!ii!!ii i
20-
15-

i i..,t :
O ,*i a..._ i i

10-/;,"-_,._._'"-,_,:._..,...r ;......... :..................

I[,-:
ff ,/ i "4-- MEDUSA-Me, RFA [

5- '_'/'" i........ 4-- SP, SPS-Ethemet I
j/ -..A... SP. SPS-FDDI I
- -*- SP, RFA]

!

0 _
0 5 10 15 20

Processors

Figure 4: Cluster performance as a func-
tion of processor count.

The effect of Bandwidth Granularity (Gb)
is seen in Fig. 5. As anticipated, increasing G b
by reducing the number of virtual processors
generally improves efficiency, but not always.
It must be noted that due to the virtual proces-
sor allocation method in MEDUSA-MP the

granularity of a two processor case is identical
to that of four processors. Similarly, three and

nine processors have the same granularity.
Clearly the efficiencies are not the same. The

computation of G b does not take into account
the actual number of processors involved in
the computation, only the number of virtual
processors. The communication rate between

two processes on a single processor usually
exceeds that of Ethernet, so efficiency is not
truly a function of Bandwidth Granularity.
While efficiency generally is a function of the

number of actual processors, it can vary
widely depending upon the performance of an

individual system relative to the speed of the
network.

8

1.0 ...

(2)

(3_1
0.8 :....................... :........................

(4)

:;' (8)i
l : 9

.........
[_ MEDUSA-MP. RFA

,4(16) I.-.A_'.IsP',sSPp_S:EFDth_)_net

o

o•- 0.6
o

m

0.4-

0.2
0 1000 2000 3000

Gb

Figure 5: Efficiency vs. Bandwidth Granu-

larity for MEDUSA-MP and the SP parallel
benchmark. Numbers in parentheses indi-
cate number of processors.

NAS SP Parallel Benchmark
To compare the performance of the SP

benchmark with MEDUSA-MP, a grid size of
61 x 51 x 64 points has been chosen. This rep-
resents a medium-sized single grid for most
CFD computations. As these dimensions do
not divide nicely among most of the configura-
tions of small numbers of processes, a slight
load imbalance is introduced. Performance is

affected only minimally.
All computation rates indicated in Fig. 4

were collected using runs of 0, 1 and 5 itera-
tions. Like MEDUSA-MP, the Mflops rating
for the SP benchmark is derived from the num-

ber of operations per iteration (835) for interior
grid points. Some operations are also needed
for boundary points, despite the trivial bound-

ary conditions. These operations are ignored.
Numbers of processes on the SPS cluster
larger than 16 have not been attempted since

the incremental performance gain is obviously
becoming negative.

Single-processor baseline computations
on the RFA cluster were done on a

61 x51 x45 point grid in order to avoid
swapping due to the limited amount of mem-

ory on the machines, which would inordinately
disadvantage the single-processor perfor-
mance. It was found that the baseline process-
ing speed is nearly independent of grid size for
a wide range of grids containing 323 points or

more. As in the SPS cluster case, computations
on multiple processors were carried out on a
grid containing 61 x 51 x 64 points. No more
than four machines of the RFA cluster were

employed successfully in any of the computa-
tions of the SP benchmark. The failure of

larger jobs appears to be hardware dependent.
One unexpected result which must be

pointed out is the relatively small gain in per-
formance achieved by using FDDI on the SPS
cluster. For four processors, there is no
improvement at all, and only slight improve-
ment over Ethernet for nine and sixteen pro-
cessors.

At first glance the performance informa-
tion given in Figs. 4 and 5 might suggest that
MEDUSA-MP is a more efficient code than

the SP benchmark. In reality, much more time

was spent optimizing the communication of
the SP code. But, because of the greater num-
ber of operations per point per iteration in
MEDUSA-ME it spends relatively less time
communicating. Another variable in the prob-
lem is the cluster on which each code was run.
The communication bandwidth for Ethernet,

relative to processor speed, is greater on the
SPS cluster than on the RFA cluster. Message
packing and unpacking speeds are also very
different.

A parameter which can account for algo-
rithmic differences, cluster differences, and

implementation differences is clearly needed.
One possiblity is the optimal computation to
communication time ratio (_) defined:

q) --

GbBcom _ lcomp

np lcom m

MwESv,
i=l

where M w is the size of the computational

word in bytes, and Sp is the speed of an indi-
vidual .processor. It is assumed that communi-
cation is not masked by computation, and that
there is no contention for network resources.

The behavior of q) for MEDUSA-MP and
the SP benchmark running on the RFA cluster
and the SPS cluster are shown in Fig. 6. The
jagged appearance of the MEDUSA-MP curve

reflects the virtual processor allocation algo-

9

I0 z

lo' i i
.................... ":i ..

• "'.. .

0 I0° _i_............................. i

• _ -i_ iI
I ' I "_

-2

i a , ,
0 ° 101 10 2

Processors

Figure 6: Computation to Communication
time ratio for MEDUSA-MP and the SP
benchmark.

rithm and its effect on the granularity of the
partitioning.

For equivalent numbers of processors, the
time ratio for the SP benchmark on the SPS

cluster is nearly an order-of-magnitude less
than that for MEDUSA-MP on the RFA clus-

ter. The SP-SPS combination, even in an opti-
mal implementation, is less able to use all
available computational resources. In this
light, the efficiency curves shown in Fig. 5
make some sense. Indeed, if the parallel effi-
ciency is plotted versus _0(Fig. 7), a more clear

].0 ..

0.8 _v...................................
• a

_" 0.6 ".................. :

• _ O & • :

1 0.4 Q;................. !.................. ::...................
T

0.2 ,• sp.MEDUSA'MP'sPS-EthemetRFA "'i

• SP. SPS-FDDI
i

0.0

10 "n 10 ° 101 10 2 10 3

Time Ratio (¢p)

Figure 7: Parallel efficiency as a function of
the time ratio 0P) for MEDUSA-MP and the
SP benchmark.

comparison between the codes may be made.
It would appear that on the SPS cluster using
Ethernet, the SP code is more nearly optimal.

This is not true when the same code and

cluster uses FDDI. The SP code is designed
such that much of the network overhead is

masked by computation. For four processors,
the code is able to mask most all of the net-

work costs. All of the communication penalty
is coming from the packing and unpacking of
messages. As the processor count climbs, there
is less computation to mask the network costs.
The system will incur idle time using Ethernet
earlier (fewer processors) than with FDDI, so
efficiency improvements will only appear after
a processor count threshold is exceeded. It is
clear that some correction must be made to the

formula for tp to account for masked communi-
cation.

Another anomaly which cannot be
explained by differences in _p may be seen in
Fig. 5. When running MEDUSA-MP on eight
processors, though G b and _0 are less, one
achieves better efficiency than when running
on nine. The behavior may be explained par-
tially by noting that there are two processes on
each processor in the eight processor case.
This allows intra-processor communication,
and overlap of communication and computa-
tion. While one process is waiting for a mes-
sage, the second can be executing, reducing
idle time on the processor and improving effi-
ciency.

The time ratio is not completely successful
in coalescing the efficiency data. It does not
fully represent implementation details like
communication masking and virtual proces-
sors. Work in this area remains.

One use of the time ratio is for predictive
purposes. For instance, if FDDI is installed on
the RFA cluster, it is anticipated that more pro-
cessors could be used efficiently. From the
plot, the time ratio at which MEDUSA-MP
should operate at 50% efficiency is approxi-
mately 5. If one concentrates on the perfect-

square processor counts, G/, may be approxi-
mated as:

G b = 6912n_ 3/4.

Re-arranging the formula for cp, and assuming
the packing and unpacking bandwidths are the

same, gives the relationship:

10

6912 B_Bp_k]4/7
np = tpM_Sp " B_,+ 2Bp_¢kJ "

The R4000 processor of the RFA cluster is

capable of packing data at a rate of 25MByte/
second and runs a single partition solution of
MEDUSA-MP at 5.24Mflop using 8Byte
words. FDDI has a peak bandwidth of

12.5MByte/second, so one could reasonably
assume that twenty-one processors could be
effectively used with FDDI. As the approxima-
tion for G b only used perfect-square processor
counts, sixteen would be more practical, and
eighteen might also work.

Conclusions

It has been established that a multi-parti-
tion flow solution algorithm can run efficiently
on small clusters of moderately powerful
workstations using Ethernet. This method will
be useful for improving parallelism and load
balancing in existing grid-level parallel codes.
A reduction of the order of the artificial dissi-

pation at partition boundaries has little effect

on solution accuracy for small numbers of pro-
cessors, and greatly reduces the volume of
communication.

Communication is quite clearly the bottle-
neck in the implementations discussed here. A
large portion of the bottleneck occurs on the

processor in the form of byte-copying over-
head. Better communication packages are
needed.

A time ratio parameter has been introduced
which, with additional work, may be useful in
comparing the implementation efficiency of
parallel solution algorithms. Additionally it
could be used to predict the performance of a
particular code on an untested computer sys-
tem.

References

IMattson, T. G., Douglas, C. C., Schultz, M.

H., "A Comparison of CPS, LINDA, P4,
POSYBL, PVM, and TCGMSG: Two Node
Communication Times," YALEU/DCS/TR-

975, Yale University, New Haven, Connecti-
cut, May 1993.

2Geist, A., Beguelin, A., Dongarra, J.,

Weicheng, J., Manchek, R., Sunderam, V.,
"PVM 3 User's Guide and Reference Manual,"
ORNL/TM-12187, Oak Ridge, Tennessee,
May 1993.

3Bokhari, S. H., "Complete Exchange on the

iPSC-860," ICASE Technical Report 91-4,
NASA Langley Research Center, Hampton,
Virginia, 1991.

4Saphir, William C., "Message Buffering and
its Effect on the Communication Performance

of Parallel Computers," NASA Ames Techni-
cal Report RNS-94-004, April 1994.

5Smith, M. H., Chawla, K., and Van Dalsem,

W. R., "Numerical Simulation of a Complete
STOVL Aircraft in Ground Effect," AIAA-91-
3293, Baltimore, Maryland, September 1991.

6Rizk, Y. M., and Gee, K., "Numerical Predic-

tion of the Unsteady Flowfield Around the F-
18 Aircraft at Large Incidence," AIAA-91-
0020, Baltimore, Maryland, September 1991.

7Smith, M. H., Pallis, J. M., "MEDUSA - An
Overset Grid Flow Solver for Network-Based

Parallel Computer Systems," AIAA-93-
3312CP, Orlando, Florida, July 1993.

8Naik, N. H., Naik, V. K., Nicoules, M., "Par-

allelization of a Class of Implicit Finite Differ-
ence Schemes in Computational Fluid
Dynamics," International Journal of High
Speed Computing, Volume 5, Number 1, 1993.

9Van der Wijngaart, R. F., "Efficient Imple-
mentation of a 3-Dimensional ADI Method on

the iPSC/860," Supercomputing '93, Portland,
Oregon, November 1993.

10pulliam, T. H., and Chaussee, D. S., "A

Diagonal Form of an Implicit Approximate-
Factorization Algorithm," Journal of Compu-
tational Physics, Volume 39, Number 2, Feb-
ruary 1981.

l lBuning, P. G., and Chan, W. M., "OVER-
FLOW/F3D User's Manual, Version 1.6,"
NASA Ames Research Center, March 1991.

12Chaderjian, N. M., and Guruswamy, G. P.,

"Unsteady Transonic Navier-Stokes Computa-
tions for an Oscillating Wing Using Single and
Multiple Zones," AIAA-90-0313, Reno,
Nevada, January 1990.

¿3Bailey, D., Barton, J., Lasinski, T., Simon,
H., "The NAS Parallel Benchmarks," NASA

Ames Technical Report RNR-91-002, August
1991.

11

Three Implementations of the NAS Scalar Penta-diagonal
Benchmark

/

Rob F. Van der Wijngaart *, Thanh Phung t, Eric Barszcz

NASA Ames Research Center, Moffett Field, CA 94035

Abstract

Three viable strategies for the implementation of the NAS Scalar Penta-diagonal

Parallel Benchmark on MIMD systems are investigated, namely transposition, pipe-

lined Gaussian elimination, and multi-partitioning. Hardware platforms considered

are the Intel Paragon XP/S-15, and a cluster of SGI workstations on Ethernet,

communicating through PVM. It is found that the multi-partitioning strategy offers

the kind of coarse granularity that allows scaling up to hundreds of processors on a

massively parallel machine. Moreover, efficiency is retained when the code is ported

verbatim (save message passing syntax) to a PVM environment on a modest size
cluster of workstations.

1 Introduction

Parallel benchmark performance results often bear little relation to realistic applications.

The reasons for that are manifold, even when taking into account that implementors are

sometimes willing to go to extremes to tune their codes, and will often squander space

in order to save a few extra operations. Perhaps the single most important factor in

reducing the value of most benchmark problems is the absence of data distribution in-

compatibilities. To remedy this deficiency the NAS Parallel Benchmarks [1] include a

set of problems derived from realistic applications from the area of computational fluid

dynamics. These original applications have been pruned so that they can be described

completely in just a few pages. It may appear that this reduction of complexity does not

affect the characteristics of the applications; roughly the same amount and type of com-

munications is required by both applications and benchmarks. But this is exactly what

causes the problem. Arithmetic operations are eliminated while virtually all data depen-

dencies are retained, which places a heavier emphasis on the communication properties

*Employee of MCAT Institute
?Employee of Intel Corporation

Employee of NASA Ames, RNR branch

of the scheme used to implement the benchmark than on that for the application. Just

reducing the data dependencies at the same rate as the overall arithmetic complexity does

not necessarily increase the realism of the benchmarks. Different parts of the application

are impacted differently by a change in arithmetic and communication loads. And even

when the relative granularity (ratio of computation over communication volume) for all

parts of the benchmark are the same as that of the application, latency will still skew the
performance of the benchmark.

Hence, the value of the conclusions one can draw from the implementation of the NAS

parallel benchmarks should not be overestimated. But we maintain that these model

problems are among the best available, and interesting lessons can be learned from them.

2 Description of SP benchmark problem

The problem selected for this paper is the Scalar Penta-diagonal (SP) benchmark, which

is derived from the diagonalized Beam-Warming approximate factorization scheme for

the computation of three-dimensional viscous fluid flow using a structured discretization

mesh. SP is a variation on the class of alternating direction implicit (ADI) schemes. A

precise description of the problem is provided in [1], including the various simplifying

assumptions made. We will outline the benchmark to identify the major computation
and communication tasks.

The form of the discretization equations is:

B, {I - L.3} B2 {I - L._} B3 {I - L.,} B4AU = RHS(U) (1)

This system is solved for the update vector AU, which consists of five values for every

grid point. The known value of U itself is the result from the previous time step. I is the

identity, and the matrices L_, are one-dimensional discrete operators of a special struc-

ture, derived from the diagonalization of the Beam-Warming scheme [5]; they comprise

difference stencils of size five in the xi-direction, but do not mix the different compo-

nents of the AU vector. Consequently, inversion of each of the factors {I - Lx,} results

in the solution of a set of five independent families of--again--independent scalar penta-

diagonal equations, one for each grid line in the xi-direction. Among these five families

there are three that have the exact same difference formulation due to a coincidence of

three eigenvalues resulting from the diagonalization, so the number of families to be in-

verted per xi-direction is actually only three. The Bi are block-diagonal matrices that

do not involve any spatial differencing, but that couple all five components of the AU

vector. Finally, the RHS matrix is a three-dimensional difference operator of size five in

all coordinate directions. It also mixes all five components of the AU vector, but it does

not have to be inverted since U is known. It should be noted that the coefficient matrices

Bi, L_, and RHS all depend on U, so they have to be (largely) recomputod for every
time step.

2

Boundary valuesare kept constant (Dirichlet conditions), so that system (1) is solved
only for interior grid points. The amountof computational workper interior point involved
in the different parts of the system depends on the particular implementation. The
transpose(TR) and multi-partition (MP) methods describedin section 4 have the same
operation count, but the pipelined Gaussianelimination (PGE) differs in a few placesdue
to fewerstored intermediate results. Operation countsare shownin Table 1.

821
B_"1
B_-_
3 {I L_,}_i=1 --

Eia__,{I - L_,}-'

RHS

U+AU

total

± x / total

MP PGE MP PGE MP PGE all MP PGE

II 12 17 19 0 2 0 28 33

5 6 3 3 0 0 0 8 9

5 6 3 3 0 0 0 8 9

l0 12 17 19 0 1 0 27 32

48 87 36 51 0 0 0 84 138

96 96 129 129 9 9 0 234 234

225 230 213 273 2 1 1 441 505

5 5 0 0 0 0 0 5 5

965

Table I: Operations per interior point for MP/TR and PGE

Clearly, most computational work is done forming the right hand side vector (RHS),

followed by inversion ({I- L_,} -1) and construction ({I- L_,}) of the one-dimensional

difference operators. The block-diagonal inverses B_ -1 can be generated directly without

constructing the B{ explicitly. Note that each phase of the SP can be executed for all grid

points independently, except for the inversion of the scalar penta-diagonal systems. Dur-

ing inversion points on the same grid line are coupled, and a certain sequential dependence
is incurred.

As an aside, we remark that a minor error appears in the NAS Parallel Benchmark

document [1], which is also contained in the SP sample code available from NAS. The

initialization formulas (3.8) and (3.9) in [1] do not constitute a transfinite trilinear in-

terpolation of the boundary values, which can be verified most easily by substituting

a constant value of C for U(om) on the boundary. The resulting initialization formula is:

u(0m) = 3C- 3C 2 + C 3, which only reduces to C if C = 0, l, or 2. The correct interpolation

formulas are:

and

P_, ¢ = (1 - _i) ¢ I_,:0 '_-_i (_ ki=l

= + P, + - - - P,P + P P,P)u(o''

(2)

(3)

3

It should be noted that the verification valuesfor residual norms and solution errors
supplied in the NAS sample code are basedon the erroneousinitialization formulas.
Obviously, computational performanceis not affected.

3 Hardware platforms and communication protocols

Efficiency of programs run on sequential computers is often strongly influenced by data

regularity and locality. Good programmers do not hesitate to change loop orderings to

take better advantage of vectorization, or to better utilize cache; it is deemed acceptable to

take (partial) responsibility for data management within the computer in order to improve

performance, although ideally one would like to leave such matters up to compilers. In the

case of parallel distributed-memory computers, management is further complicated due

to the fact that local memory has much faster access than remote memory. Certain highly

specialized architectures can provide reasonably fast access to remote memory, but at the

expense of the rigidity of regular data sizes and lay-out on the set of processors available,

while still requiring expensive dedicated switching networks. An example is the execution

of data-parallel programs on SIMD (Single Instruction/Multiple Data) machines. SIMD

machines require some directions from the programmer how to distribute data, but take

care of any data transport themselves, just like conventional computers.

Good results have been reported for certain applications on those machines. But

if the problem at hand features little regularity, or if the hardware available has slow

interconnections, more user interference is required. The MIMD (Multiple Date/Multiple

Instruction) computing model on distributed-memory machines with explicit message

passing (we will refer to this situation as the MIMD model, for brevity) gives the user

complete responsibility for the data lay-out and inter-processor data movement. The

benefit of assuming this responsibility is flexibility and control; the price is an increased

programming burden, and usually relatively slow communication. Therefore, algorithms

designed to run on MIMD machines need to minimize communications, both in number

and volume. Once this fact is understood, portability of MIMD programs is eased, since

message passing syntaxes are very similar on most current platforms.

In this paper we investigate three different strategies for implementing the SP on

different MIMD architectures. The main machine used for comparison of these methods

is an Intel Paragon XP/S-15 with 208 nodes of 32MB RAM and a 16KB 4-way associative

data cache each. The communication protocol used is NX, running under the operating

system OSF/1. Typical latencies and bandwidths on this machine are 112 #s and 35

MB/s, respectively, regardless of the distance traveled between nodes. The Paragon

i860XP chip features two vector pipelines for addition and multiplication, which can be

controlled using compiler flags.

From this comparison we draw conclusions regarding the viability of each of these

methods on very-high-latency networks, and select the most promising for implementation

on a network of workstations. The configuration chosen here consists of 4 Silicon Graphics

4

workstations with 8 MIPS R3000 33MHz processorseach. Main memory is 256 MB
of shared memory for each machine, with a primary data cacheof size 64 KB and a
secondarydata cacheof size256 KB. Connectivity is establishedthrough Ethernet. The
syntactic communication protocol is PVM 3.2 (Parallel Virtual Machine), which features
typical latenciesand bandwidthsof 2500ps and 0.58 MB/s, respectively. No vectorization

is available on the workstations. Interestingly, the relative latency on the network of

workstations (i.e. the product of latency and bandwidth) is lower than that on the

Paragon.

4 Algorithms

In the context of distributed parallel computing, an algorithm does not simply constitute

a list of arithmetic operations to be carried out plus an ordering, but also a description of

the data lay-out and the communication strategy. The three algorithms considered here

are---highly tuned--variations of schemes that were compared earlier in [8] for another

application.

4.1 Transpose method

In the current implementation of the transpose (TR) method (also called dynamic block-

Cartesian [8], or global exchange), each processor gets assigned a single plane of data of

the whole grid during each of the phases of the solution of system (1). Consequently,

the number of processors p must equal the number of planes in the grid in all directions.

Since the SP specifies cubic grids of linear dimensions of 64 and 102, respectively, the

number of processors employed must be 64 or 102 also. If more processors are to be

used, then they must be an integral multiple--called a-- of the number of planes in the

grid, and each processor receives a contiguous cut from one whole plane that stretches

the grid completely in one coordinate direction. Again, the data space owned by each

processor has a thickness of just one point. Whereas the particular orientation of such a

(partial) plane is immaterial during most parts of the SP, it is essential that it be aligned

with the discretization operator direction during the inversion of the scalar penta-diagonal

systems. Since these systems are solved in three directions, the data planes have to be

rotated--transposed--in between these inversion phases. On a grid of size n 3 this takes

place by letting every processor send n- 1 lines of data to the n- 1 processors that need

them, while also receiving n-1 lines from the other processors.

A complication of TR is caused by the non-linearity of the problem. It is not sufficient

simply to transpose the intermediate solutions of system (1) as the left-hand-side operators

are inverted successively from left to right. Since the operators depend on U themselves,

U has to be transposed along, doubling the communication load.

Some savings can be obtained if the number of processors matches the grid size exactly

(a = 1). First, each plane contains whole grid lines in two directions, obviating the need

for transposition betweenat least one pair of inversions. Second,if two time steps are
combined,another transposition can be saved.The solution directions in two time steps
areasfollows: z ---. y _ x ---* z ---* y ---. x --* .-.. These directions can be kept in-processor

if the chain of planes plus transpositions is defined as follows (T signifies a transpose):

T T T • requiring only three flips of U and two of the intermediate resultzy _ ZX ---4 xy _ .. ,

for every two iterations. Flips of U and the intermediate results can actually be combined

to reduce latency, for a total of three per two iterations. Also, for computational efficieny

the reciprocal of the first element of the U vector is transposed along with U (the divide

operator is very expensive). If the number of processors exceeds the number of planes,

then additional transposes within planes are needed to bring the 'broken' dimension in

processor.

The communication requirement per processor per iteration is relatively easy to deter-

mine. The only data transfers are during the flips, and before assembling the right hand

side vector, where each processor receives and sends four data planes (two from/to each

side). Assuming a processor owning an interior plane (with neighbors on each side), then

the total number of messages is:

grnsg Tn = 3(n + a - 2)/2 + 4, (4)

while the total number of bytes transferred (1 word = 8 bytes) is:

Vmsg Tn=- 252+60a+60(a-1) -60 (a+l). (5)
a

4.2 Pipelined Gaussian elimination

In the current version of the pipelined Gaussian elimination (PGE) method (also called

static block-Cartesian [8]), each processor receives a single grid block whose dimensions

are as close to cubical as possible. Since this generally means that no single grid line

is fully contained within a block, some way of keeping processors busy while a grid line

is 'swept out of the block' is needed. The method adopted here is two-way pipelined

Gaussian elimination. The inversion procedure for a grid line is essentially Gaussian

elimination for a banded system of width five.

In order to reduce message overhead grid lines in each of the three coordinate directions

are grouped into pencils that are treated as units. Each processor contains segments of

a number of pencils. The two-way pipeline is started on the same pencil at each end by

different processors on opposite sides of the grid. Once each has finished its segment of

the pencil, it passes interface information to the neighboring processor and starts at the

extreme end again of the next pencil. Interior processors behave similarly, except that

they also have to receive information for each pencil. Some special coding is required

to combine results where the two ends of the pipeline meet. The optimum pencil size

depends on the amount of work on a grid line, and consequently the size for the forward

elimination (GI) will be different from that for the backsubstitution (Gb). This effect

6

is describedin detail in, e.g., [4]. The benefit of two-way PGE, asopposed to one-way

PGE, is that the start-up cost of the pipeline is halved. Moreover, if only two processors

split a coordinate direction, then each need contain just one (segment of a) pencil without

incurring a load imbalance.

Although the communication volume of PGE is the smallest possible, a disadvantage

is that many messages need to be sent, one at the end of each pencil segment. For a

processor assigned to a completely interior grid block the maximum number of messages

sent per iteration on an n 3 grid with p processors is:

Nmsg PaE = 3(11G1 + l/Gb)n2/ ff_-_ + 6.

while the maximum number of bytes transferred is:

Vmsg PGE = 1248n2/_p-_.

(6)

(7)

Typical figures for pencil sizes for simulations on the Paragon are Gf = 8 and Gb = 16,

resulting in gmsg PoE = 9n2/(16,_/p -_) + 6.

4.3 Multi-partition

In the current version of the multi-partition (MP) method (also called Bruno-Cappello

multi-cell [8]), each processor receives _ grid blocks--cells--that effectively line up along

a (logical) body diagonal of the grid, save periodic effects. This is called the 3D diagonal

scheme [4]. Cells are positioned such that every coordinate plane that cuts the grid

intersects with exactly one cell of each processor. Thus, there is always work to do for

every processor during the sequence of penta-diagonal inversions. No transposition is

needed, and the pipeline that results is very coarse grained and perfectly load balanced.

Since in MP all processors have the same number of boundary and interior cells, they all

send per iteration the exact same number of messages:

Nmsg MR = 6v/p, (8)

and bytes:

VrnsgMP = 1392n2(v/-p - 1)/p. (9)

(the latter figure is not yet the absolute minimum; this will be remedied in the final paper)

4.4 Comparison

Besides programmer proficiency and serendipitous compiler optimizations, there are five

major factors determining the relative efficiencies of the algorithms described above: com-

munication volume, number of messages sent, load balance, vectorizability, and cache use.

These factors can be analyzed in isolation, although it is their combination that deter-
mines overall efficiency.

If messagepassing is synchronous, the amount of time tc spent on transferring k

messages with an aggregate size of m bytes on a contention-free network can be expressed

as: tc = ka + m/fl, where a is the latency in seconds, and fl is the message bandwidth in

bytes/second.

When comparing communication loads we can draw up a division of the (n,p)-plane

where either of the different algorithms is most efficient, depending on the value of the

parameter aft (the relative latency). As it turns out, for no non-trivial grid size is there a

point in (n,p)-space where TR has a lower communication load than the other two meth-

ods, regardless of the relative latency. Figure 1 shows how the other two methods divide

the (n,p)-plane for the relative latencies of the Paragon and SGI/PVM configurations,

respectively.

150 I

100........................i.......................!..i.......................

75 ..

25

MP o._timal
0

0 20 40 60 80 100

Size of grid n

Figure 1: Regions of optimality for PGE and MP

Clearly, as the number of nodes keeps increasing for a given grid size, PGE will become

more efficient than MP, whereas the converse is true when the number of processors is

fixed and the grid size keeps increasing. This is largely a latency effect; even for infinite

bandwidth (i.e. aft .---*c¢) Figure 1 remains qualitatively the same. Since the number of

messages k for PGE is determined by the number of pencils passing through a block, k

goes down as p increases, simply because the grid block decreases in size. At the same

time, k goes up for MP, because the number of messages is proportional to the number of

cells in each coordinate direction, which scales as V_" In the limit of p = n 2, each of the n

MP cells per processor contains exactly one grid point, while a single PGE grid block still

8

contains n points, and has a face area of _ points; MP has become overfragmented,

and should not be used.

The situation is reversed when the number of processors is kept fixed and the grid size

is allowed to grow; k for PGE scales with grid size, so it keeps going up, while k for MP

stays the same. It should be noted, however, that latency for PGE has been reduced by

pencil grouping at the expense of extra idle time for pipeline fill, which is not accounted

for in figure 1.

The other factors influencing efficiency are not so easily quantifiable. First, there

is load balance. Whereas MP is perfectly balanced when n mod vf_ = 0, PGE and

TR never are. The latter two always experience load imbalance from boundary effects

('interior' grid blocks/planes have different computation and communication requirements

than 'boundary' blocks/planes).

Second, there is vectorizability. Put simply, the method with the longest vector length

(inner loop length) wins. Since vector length is determined by the dimensions of planes,

blocks, and cells, TR, PGE, and MP are ranked in this order for vectorizing efficiency.

Finally there is data cache utilization. Here the method that has the highest data

locality wins, because more of the data used inside loops will fit in cache. TR and PGE

have the same number of points per plane/block, but MP has a smaller number of points

per cell, because each processor owns multiple cells. Consequently, for large n MP will

always be the first to run loops completely in cache as p increases, provided the same

number of data elements per grid point have to be loaded into cache for each loop in the

three respective methods.

Somewhat different optimization routes have been taken by the implementors of the

three methods, resulting in different numbers of auxiliary arrays that influence the oper-

ation count (Table 1), the memory requirements, and the number of data elements per

point inside loops. Table 2 shows the total memory requirements for all processors com-

bined for each of the three implementations. The table distinguishes between memory

needed for a single processor-case, and the parallel overhead for multi-processor cases.

Only terms that scale as n 3 or more in the worst case (smallest possible grain size) are
included.

PGE

MP

TR

single processor

18n a

38n a

24n 3

parallel overhead

32n2,_/'fi + 48n_ 7 + 10324p

228n 2v/_ + 336np

(36a + 3)n 3

worst case

p_-- n 3

p=rt 2

p ---- an -- 12 2

Table 2: Memory requirements (double precision words)

In order to assess the effects of different non-communication-related optimization

strategies on the performance of the parallel algorithms used, we also present results

for single-processor computations on several different machines (Table 3). An interme-

diate grid size (n = 32) was selected in order not to favor any particular algorithm; the

maximum vector length is not large enough to disadvantage the cache-based PGE and

MP methods, while the whole problem still cannot be run entirely in cache. For reference

we also include results for the original serial code distributed by NAS'.

PGE

MP

TR

NAS*

IBM RS6000-590 Paragon XP/S-15 MIPS R3000

3.89 30.1 65.8

4.92 38.5 76.7

8.20 44.5 120.

21.2 82.7 246.

Table 3: Single-processor cpu times for 10 iterations on 323 grid

As always, caution should be used in interpreting the data for purposes of scaling

parallel results (see section 5.1). While PGE performs significantly better in the single-

processor case than the other two methods, an important part of its advantage is due to a

reduction of memory strides by performing data rearrangements (local transposes). But

as the number of processors grows, grid blocks for PGE and MP shrink, and the stride

problem lessens, leading to a loss of efficiency for PGE due to the copying involved in the

local transposes.

5 Paragon computations

5.1 Performance models

In order to predict execution times for the three methods, models are constructed for

their parallel performance based on single-processor computations and the communication

figures presented in section 3. The general formula applied is: ttotal = ta + tc = ta "4-ks +

m/_, where ta is the pure computational cost, which can often be written as tv(n - 2)3/p,

i.e. the computational cost per point, multiplied by the number of interior points in the

grid, divided by the number of participating processors. When grids are reasonably large

(greater than, say, 163) the total number of arithmetic operations is indeed proportional

to the number of interior points in the grid, and t v can often be considered constant. For

MP the cell sizes shrink rapidly as p grows, and if small grids are used to predict their

computational cost, a more complex performance model must be used that is based on

operation count rather than on point count. Even then, it is found that for small grid sizes

(4 < n < 16) the time per operation is not constant, but depends on n. Measurements of

(n,Mflops)-pairs for some small grids are: (5, 4.00), (6, 5.16), (8, 5.37), (12, 5.64), (16, 5.72).

A crude fit to these results is: Mflops = 6 - 4/(n - 3). This can subsequently be used in

10

the parallel performanceprediction (400 time steps) by replacing the grid sizewith the
cell size, i.e.:

MP 0.33p(6 (n -- 2) 3t,o,o,= _ 4/(nv__ 3)) + 0.27v_ + 0.016n2(v_ - 1)/p (10)

The results of this prediction formula are included in Table 7. Performance models for
the other two methods are under construction.

5.2 Results

Figure 2 shows the number of (millions of) interior grid points updated per second for

the two classes of problems, i.e. n = 64 and n = 102, for each of the three methods.

This figure is derived from the wall clock timings of 400 iterations (see Tables 5, 6, and

O

1.5[._°

0t
i /i !" i i
; fs ; j . .

i.............__ i.l-.- _E..-_ i
0.5-i JJ..Z_..'/.,'"! I+ Mr,,..64

II)_2_.:.'."..'" :" I-_.'r_:._
/ I1_* ._' i i-_'--PGE, n-102
/ d"5"i i I---_- MP..-]9?

I: ! io.o :,
0 100 200 300 400 500 600

Number of processors p

Figure 2: Performance of MP, PGE, and TR on Paragon

7), which are the more common--but less insightful--way of presenting SP performance

data. The results are obtained by using the vectorization flag for TR. MP and PGE fared

better when vectorization was disabled. It follows that MP is best as long as the problem

does not become overfragmented. For the two problem classes tested this means that cells

should be of size 5 3 or bigger.

An important reason for the success of MP that is not immediately apparent from

its communication load is its ability of latency hiding. Since the granularity of MP is

relatively coarse, namely at least the size of one whole cell, it is possible to execute send

operations long in advance, do useful work within a cell, and postpone posting receives

11

for interface data until after that data has arrived; network contention and other laten-

cies are generally greatly reduced or eliminated. And in the case of truly asynchronous

communication, such as when a message co-processor (MCP) is used, there is not even a

price to be paid for interrupts due to data packets arriving from the network. It has been

observed that MP benefits about 5 to 10% from using the MCP, whereas PGE benefits to

a lesser extent, and TR barely speeds up at all. The reason for this is as follows. All three

methods can do some work computing (parts of) the right hand side vector while waiting

for interface information to arrive from neighboring planes/blocks/cells, thus reducing the

cost of that communication. But the penta-diagonal inversion process is too fine-grained

for PGE to allow any overlap of computation and communication, and the flips in TR

cannot be utilized efficiently either, because again the granularity is fine, and the trans-

posed U needs to be fully assembled in order to compute after-flip coefficient matrices L,,

and B_ -1. In contrast, MP offers opportunities for overlap during all stages of the solution

process. Examine, for example, the forward elimination of the penta-diagonal inversion in

the xl-direction. While an interior cell is waiting for information from the processor that

owns the adjacent cell on the left, it can compute the new L,, and block on receive only

after it has formed its new left hand side. During the backsubstitution there are no more

L, 1's to compute, but now a processor can apply the block-diagonal inversion matrix B_ -1

to the latest completed cell while the next cell is waiting for interface data to arrive from

the right. Analyses with the AIMS performance monitoring system [9] on the MP code

running on the Intel iPSC/860 have shown that there is no latency noticeable for either

problem class during any stage of the computation.

Interestingly, our positive experiences with MP run counter to the investigation re-

ported in [4], whose authors obtain the best performance for PGE. Several factors can

explain this discrepancy. First, Naik et al. [4] have used MP and PGE to implement

the complete flow solver ARC3D instead of the SP benchmark that is based on it. More

importantly, they have implemented a two-dimensional version of MP, which has poorer

communication properties than the three-dimensional scheme used here. Not only is the

number of cells per processor larger (more messages), but also the total communication

volume is larger, leading to significantly higher data transmission costs and poorer scal-

ability. Worst of all, during the penta-diagonal inversions messages are not consolidated

on a per-cell basis, but are sent at roughly the same frequency as for PGE (see Table 9 in

[4]), leading to a greatly inflated latency penalty. Consequently, we believe that a careful

implementation of MP for ARC3D can lead to better performance than PGE, provided

the number of processors does not get excessively large.

6 PVM results

Based on the Paragon results, MP was selected for a port to a network of workstations

using Ethernet and PVM, version 3.2 [2]. The only part of the code that needed to be

changed was concerned with the creation of processes and with message passing, which

12

accountedfor lessthan 1%of the programtext. All arithmetic and other logic wascopied
verbatim.

Although the 8 processorsin each of the 4 workstations in the cluster usea single
sharedmemory, PVM 3.2 does not take advantageof this hardware feature and routes
all communicationsthrough the local PVM daemonanyway. Consequently,for commu-
nication purposesthe configuration consistsof a network of physically distinct processors
connectedthrough Ethernet.

The grid sizechosenis 42 x 42 x 42 points; this is smaller than the problem classes
run on the Paragon. The reasonfor this is that the number of processorsapplied to a
problem on a network of workstations is usually significantly smaller than that within a
tightly-coupled massivelyparallel machine like the Paragon. In order to keepsimulation
times reasonablyshort a smaller grid must then also be selected,especially since many
runs needto be doneto establish reliable timings. As wasarguedin [7], timings for PVM
jobs onmulti-user systemssuchasthe oneusedin this study arebestcarriedout by taking
ensembleminima of large sets of short runs (few iterations), as opposed to the common

engineering practice of using averages. The latter will give a statistical performance figure

on an averagely loaded system, while the former gives a good estimate of performance on
a dedicated cluster.

In Table 4 we present results for computations on the cluster.

No. processes

1

4

9

16

time/step (s) speed-up efficiency Mflops

51.0 1 1 1.1

13.9 3.7 0.92 3.9

9.3 5.5 0.61 5.8

8.6 5.9 0.37 6.3

Table 4: Performance of MP on cluster using PVM

It was shown in [7] that these figures deteriorate only slightly when the grid is not

cubical, even when the largest aspect ratio is more than 2. Clearly, the best speed-up

is obtained by going from 1 to 4 processes. Beyond that the performance deteriorates

quite rapidly. The main reason for that would appear not to be a limitation of message

bandwidth. After all, even for a 16-process case the number of floating point operations

within one iteration for one process is about 3,400,000, while the total amount of data

transferred per process is just about 460,000 bytes. So the total computation time should

be about 3.2 seconds, while the communication time should not be more than 0.8 seconds,

for a total of 4.0 seconds per time step. Net latency is around 0.1 second per time step.

The remaining 4.5 seconds are spent on idle time when the scheduler is not allocating

time for a process, on load imbalance due to such time-outs, and--most importantly--on

message contention. All along it was assumed that the PVM message bandwidth is about

13

0.58 MB/s, but this number was obtained from a message passing experiment between

two machines on a dedicated network [3]. So the aggregate bandwidth may indeed be

reasonably large, but the effective bandwidth, namely the bandwidth share for each

process, is only a fraction of the total. Should all nodes be connected directly, then

there will still be contention in the present cluster, because there are only four physical

machines and four gateways for 32 processors. On a better connected network (or one

with a significantly higher aggregate bandwidth, such as FDDI) better scalability will be
obtained.

Note that scalability on a network of workstations is generally not as good as on

massively parallel machines that feature fast communication networks. So even good,

coarse-grain algorithms will typically not scale well to hundreds or thousands of worksta-

tions. This need not even be necessary in order to employ an extensive cluster usefully.

In certain important applications, such as flow solvers on compound grids, several levels

of parallelism exist [7]. At the highest level near-trivial parallelism obtains [6], since it-

eration on a grid can occur completely independently from, and hence in parallel with,

iterations on other grids; boundary values get exchanged only after each whole iteration

is complete. If more parallelism is sought, individual grids can be divided among sev-

eral processors, using any of the domain decomposition methods described here. So the

number of concurrent processes is the product of the number of grids and the number

of processors per grid. That latter number need not be large in order still to obtain

large-scale overall parallelism. This is important, because there exist certain inherently

unscalable algorithms for small numbers of processors that are potentially more efficient

than multi-partitioning, the most important being two-way Gaussian elimination. As was

mentioned in section 4.2, if the number of processors dividing a coordinate direction is

two, the pencil segment size equals the grid block size and the processors can be active all

the time, except during the swap of their interface data. If all three coordinate directions

are divided in two, eight processors can be active continuously, which is the maximum for
this method.

7' Conclusions

Three strategies have been presented for implementing the implicit solution method de-

fined by the NAS Scalar Penta-diagonal Parallel Benchmark. Of these the multi-partition

method has shown the largest range of optimality on the massively parallel Intel Paragon

machine. This good performance was achieved because of the combination of coarse

granularity and modest communication volume. The multi-partition method was then

ported to a network of workstations using PVM, which was an easy exercise; no code

was changed, except for message passing syntax and for creation of PVM processes. Rea-

sonable scalability was observed on a small number of processors (up to 16) connected

through Ethernet.

14

References

[1] D. Bailey, J. Barton, Th. Lasinski, H. Simon, The NAS Parallel Benchmarks, Report RNR-
91-002 Revision 2, Nasa Ames Research Center, Moffett Field, CA, 1991

[2]

[3]

[4]

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM3 User's
guide and reference manual, Oak Ridge National Laboratory report ORNL/TM-12187, Oak
Ridge, TN, 1993

T.G. Mattson, C.C. Douglas, M.H. Schultz, A comparison of CPS, LINDA, P4, POSYBL,
PVM, and TCGMSG: Two node communication times, YALEU/DCS/TR-975, Yale Uni-
versity, New Haven CT, 1993

N.H. Naik, V.K. Naik, M. Nicoules, Parallelization of a class of implicit finite difference
schemes in computational fluid dynamics, International Journal of High Speed Computing,
Vol. 5, No. 1, pp. 1-50, 1993

[5] T.H. PuUiam, D.S. Chaussee, A diagonal form of an implicit approximate factorization
algorithm, Journal of Computational Physics, Vol. 29, p. 1037, 1975

[6] M.H. Smith, J.M. Pallis, MEDUSA - An overset grid flow solver for network-based parallel
computer systems, AIAA Paper 93-3312CP, 24 th Fluid Dynamics Conference, Orlando, FL,
July 1993

[7]

[8]

M.H. Smith, R.F. Van der Wijngaart, Granularity and the parallel efficiency of flow solution

on distributed computer systems, To appear as AIAA Paper 94-2260, 25 th Fluid Dynamics
Conference, Colorado Springs, CO, June 1994

R.F. Van der Wijngaart, Efficient implementation of a 3-dimensional ADI method on the
iPSC/860, Supercomputing '93, Portland, OR, November 1993, IEEE Computer Society
Press, Los Alamitos, CA

[9] J.C. Yan, P.J. Hontalas, C.E. Fineman, Instrumentation, performance visualization and
debugging tools for multiprocessors, Proceedings of Technology 2001 vol. 2., pp. 377-385,
San Jose, CA, December 1991

8 Appendix

P
64

128

256

512

n = 64 n = 102

444 1396

264 787

137 454

93 285

Table 5: Paragon execution times for PGE (400 steps)

15

P

64

102

128

204

256

306

408

510

n = 64 n = 102

274

778

180

514

161

485

508

539

Table 6: Paragon execution times for TR (400 steps)

measured predicted

p n=64 n= 102 n = 64 n= 102
16

25

36

49

64

81

100

121

144

169

196

256

361

400

441

484

1370

747 2496

467 1793

343 1290

293 1012

246 923

196 696

173 598

159 529

151 467

141 419

377

337

327

307

306

886

580 2339

414 1645

313 1225

248 952

204 764

173 630

152 530

137 455

128 396

125 350

285

228

217

210

207

Table 7: Paragon execution times for MP (400 steps)

16

